

CLFV in heavy state decays at colliders

Summarizing experimental part of Snowmass white paper

Charged Lepton Flavour Violation in Heavy Particle Decays

arXiv:2205.10576

with contributions from

C. Caillol and S. Xella

Seattle Snowmass Summer Meeting 2022

Mogens Dam
Niels Bohr Institute, Copenhagen
21st July, 2022

Outline

- ◆Experimental situation
- ◆Z decays
- ◆Higgs decays
- ◆Top quark production and decays
- ◆Summary

Experimental situation

The LHC Situation

About 140 fb⁻¹ have been collected at $\sqrt{s} = 13 \text{ TeV}$ in Run 2 (2015-18)

X

Production cross sections

Large data samples

 $8 \times 10^{9} \text{ Zs}$

 1×10^8 ttbar

 7×10^6 Higgs

 3×10^7 single top

High backgrounds and less powerful kinematic constraints limit the per

 \Rightarrow Resorting to sophisticated algorithms (e.g. Machine Learning).

Future Circular*) e+e-Collider

- FCC-ee, if constructed, will have an enormous instantaneous luminosity.
 - At the Z pole, **10**⁵ times higher than LEP.
- Luminosity falls off with vs due to synchrotron radiation

FCC Integraded Programme:

- Stage 1: Very high luminosity e⁺e⁻ collider Z, WW, HZ, tt factory
- Stage 2: 100 TeV proton-proton collider

)* I will here touch mainly on circular e⁺e⁻ colliders due to their superiour event statistics compared to linear colliders

During a 15 year's running period, FCC-ee will deliver

$$5 \times 10^{12} e^{+}e^{-} \rightarrow Z$$
 $10^{8} e^{+}e^{-} \rightarrow W^{+}W^{-}$
 $10^{6} e^{+}e^{-} \rightarrow HZ$
 $10^{6} e^{+}e^{-} \rightarrow tt$

The Z statistics exceed that of HL-LHC by more than $\times 10$. Statistics less than LHC for Higgs ($\times 1/100$) & top ($\times 1/10$)

Experimental conditions will be very clean \oplus strong kinematic constraints are imposable.

Even with less events, senitivities may be better.

	LHC Run 2	HL-LHC	FCC-ee
Z bosons	8 × 10 ⁹	1.7 × 10 ¹¹	5 X 10 ¹²
Higgs bosons	7 × 10 ⁶	1.6 X 10 ⁸	1.2 X 10 ⁶
top quarks	2.2 × 10 ⁸	5 X 10 ⁹	2 X 10 ⁸

Z Decays

$Z \rightarrow e\mu$ @ LHC

 Look for bump in eμ mass distribution

ATLAS Analysis from full Run-2 dataset [1]

Event selection:

- Oppositely charged $e\mu$ pair with mass in window 70 < $m_{e\mu}$ < 110 GeV
- Machine learning BDT trained on leading jet p_T , E_T^{miss} , and $p_T^{e\mu}$
- ⇒ Signal acceptance × efficiency: 10.3%

Backgrounds:

- $Z \rightarrow \tau\tau \rightarrow e\mu + 4\nu$, where all vs are soft
- Non-resonant (di-boson, top quark single or pair, $W \to \ell v$)
- $Z \rightarrow \mu\mu$, with one μ misidentified as e (hard brems in ECAL)

Result:

From fit to $m_{e\mu}$ distribution of 7.9 × 10⁹ Z decays, set 95% CL branching fraction limit

 $\mathcal{B}(Z \to e\mu) < 2.62 \times 10^{-7}$

HL-LHC projection:

- ×20 data from HL-LHC: \sim 5 × 10⁻⁸
- Contribution from CMS(?)

$Z \rightarrow e\mu @ e^+e^- colliders : LEP & FCC-ee$

Extremely clean signature:

 Beam energy electron recoiling against beam energy muon

OPAL@LEP: Background free search from 4×10^6 Z decays

$$\mathcal{B}(Z \rightarrow e\mu) < 17 \times 10^{-7}$$

FCC-ee

- 5-6 orders increased Z statistics w.r.t LEP
- Modern detectors: Momentum resolution improved by more than one order w.r.t. LEP: $\mathcal{O}(10^{-3})$ at 45.6 GeV
- Inv. mass, $m_{e\mu}$ constrained to 10^{-3} level from low beam energy spread
- \Rightarrow Signal will stand as a 2D "delta function" on top of the falling background tail from Z \rightarrow $\tau\tau$ \rightarrow e μ + neutrinos. Only for more than 10^{11} Z decays will Z \rightarrow $\tau\tau$ background start to appear.

Main experimental challenge believed to be: $Z \to \mu\mu$ with hard bremsstrahlung of μ in ECAL material $\Rightarrow \mu$ fakes e

From NA62 measurements: Expect this background to appear at $\mathcal{B} = 10^{-8}$ level.

Situation can be controlled by

- Longitudinal ECAL segmentation (shower shape)
- Independent means of e/μ separation: dE/dx (dN/dx)

Without (with) dE/dx, may reach \mathcal{B} level of 10^{-9} (10^{-10})

[3]

$Z \rightarrow e\tau$, $\mu\tau$ @ LHC (i)

Signal and backgrounds not well separated:

- ⇒ Exploit all possible available event information
- **⇒ Machine Learning Neural Network NN**

ATLAS Analysis from full Run-2 dataset [4,5]

Mass of $\ell \tau$ system from collinear approximation:

- Assume that neutrino direction is parallel to visible tau decay products direction
- In transverse plane, project *missing momentum* vector onto tau direction ⇒ neutrino momentum

Event selection strategy:

- Oppositely charged ℓ and au

$$m_T(\ell, E_t^{miss}) < 35 \text{ GeV & } m_{vis}(\ell, \tau) > 60 \text{ GeV}$$

- Cut on combined NN output based on
 - NN1 from low level variables (e.g. momentum components)
 - NN2 from high level variables (e.g. $m_{col}(\ell \tau)$)

$Z \rightarrow e\tau$, $\mu\tau$ @ LHC (ii)

Examples of combined NN distributions

ATLAS Analysis from full Run-2 dataset [4,5]

Combined analysis (two separate papers) exploiting as well hadronic, τ_h , as leptonic, τ_ℓ , tau decays

Results: 95% CL limits

$$\mathcal{B}(Z \to e\tau) < 5.0 \times 10^{-6}$$
 & $\mathcal{B}(Z \to \mu\tau) < 6.5 \times 10^{-6}$

Notice: ×20 weaker limit than for eµ search

HL-LHC projection:

- \sim ×20 data from HL-LHC: Possibly reach \sim 10⁻⁶
- Contributions from CMS(?)

$Z \rightarrow e\tau$, μτ @ e^+e^- colliders : LEP & FCC-ee

Search method at e⁺e⁻ colliders:

- Identify clear tau decay in one hemisphere
- Look for "beam-energy" lepton (ℓ = e or μ) in other hemisphere

Limitation: How to define "beam-energy" lepton

- Unavoidable background from $\tau \to \ell \nu \nu$ / with two (very) soft neutrinos
- Background level depends on momentum resolution

At FCC-ee, conditions much much more favourable

- 5-6 orders higher statistics
- Better momentum resolutioon by factor $\mathcal{O}(10)$

Notice:

- Very different horizontal axis: much better resolution
 - Only uppermost 1% of momentum distribution shown!
- Very different vertical scales: Statistics!

Strong development in sensitivities:

LEP (1995)
$$\mathcal{B}(Z \to \ell \tau) \lesssim 10^{-5}$$

HL-LHC (2035)
$$\mathcal{B}(Z \to \ell \tau) \lesssim 10^{-6}$$

FCC-ee (2050?) $\mathcal{B}(Z \to \ell \tau) \lesssim 10^{-9}$

Heavy resonances (e.g. Z') \rightarrow e μ , e τ , $\mu\tau$ @ LHC

CMS Analysis from full Run-2 dataset [7]

No excess observed

Exclude Z' ($\mathcal{B} = 0.1$) below:

5.0 TeV

4.3 TeV

4.1 TeV

12

Higgs Decays

Search divided into 4 categories:

μτ_h, μτ_{e,} eτ_{h,} eτ_μ

Shown here: collinear mass for $\mu \tau_h$

Each of the 4 categories further subdivided into 4:

0 jet, 1 jet, 2 jets gg-fusion, 2 jets VBF

For each, construct BDT discriminant

BDT discriminant based on multiple variables:

$$p_T^{\ell}$$
, $p_T^{\tau\text{-vis}}$, m_{col} , p_T^{miss} , $m_T(\tau, p_T^{miss})$,...

No excess over SM expectation observed. Results from maximum likelihood fit to BDT distributions.

Observed upper limits (95% CL):

$$\mathcal{B}(H \to \mu\tau) < 15 \times 10^{-4}$$
 $\mathcal{B}(H \to e\tau) < 22 \times 10^{-4}$

⇒ Upper limits on Yukawa couplings:

15

Use Higgs production mode: $e^+e^- \rightarrow HZ @ 240 (250) GeV$

- Statistics:
 - ~ 1 M events at CEPC/FCC-ee (3 years)
 - ~ 0.5 M events at ILC (15 years)
- Exploit dominant (70%) Z decay mode Z → qq
 - Loose requirement on di-jet mass
- H → eμ
 - Ask m_{eu} to be within window around m_H
 - Detection efficiency: 41%
- H → eτ, μτ
 - Use again only eμ signature: eτ (μτ) → eμνν
 - Punished by $\mathcal{B}(\tau \to \ell \nu \nu) \simeq 18\%$
 - Reconstruct τ mass from ℓ and \mathbf{p}^{miss} ; if consistent with m_{τ} , reconstruct τ momentum from same
 - Ask $m_{\tau\ell}$ to be within window around m_H
 - Detection effeciency: 5%
- In general no (few) background events within signal windows

- Difference between $e\mu$ and τ modes due to different detection efficiencies
- Probably potential for improvements from refined analyses including combined discriminating variables.
- However, strongly statistics limited

ATLAS Analysis from full Run-2 dataset [10]

$$\mathcal{B}(H \rightarrow e\mu) < 6.2 \times 10^{-5}$$

Future sensitivities – LHC and e⁺e⁻ colliders

- HL-LHC: Expect factor 5-10 improvements from ×20 larger data samples + refinement of analyses
- Future e⁺e⁻ facilities will be severely statistics limited:
 - Likely, only small improvements w.r.t. HL-LHC

Seattle Snowmass Summer Meeting

Search for other scalar particles $\rightarrow \mu \tau$, et

LHCb analysis of 2 fb⁻¹ of 8 TeV data

- Targets forward production
- Most sensitive result so far for scalar masses below 125 GeV

CMS analysis of 36 fb⁻¹ 13 TeV data

Analysis strategy close to that focussed on 125-GeV particle

[12]

[13]

17

Mogens Dam / NBI Copenhagen Seattle Snowmass Summer Meeting 21 July, 2022

Top quark production and decay

CLFV in top quark production and decay

Combined (BDT) variable to discriminate signal/background

Production channel found to be most sensitive:

Higher event yield; harder p_T final state particles

Mogens Dam / NBI Copenhagen Seattle Snowmass Summer Meeting 21 July, 2022

Summary & Outlook

Summary & Conclusion

Reminder from slide 5

	LHC Run 2	HL-LHC	FCC-ee
Z bosons	8 × 10 ⁹	1.7 × 10 ¹¹	5 X 10 ¹²
Higgs bosons	7×10 ⁶	1.6 x 10 ⁸	1.2 X 10 ⁶
top quarks	2.2 × 10 ⁸	5 X 10 ⁹	2 X 10 ⁸

Summary of limits/sensitivities...

	LEP	LHC Run 2	HL-HC	FCC-ee
$Z \rightarrow e\mu$	1.7 × 10 ⁻⁶	2.6 × 10 ⁻⁷	10 ⁻⁷	10 ⁻¹⁰ - 10 ⁻⁹
$Z \to \ell \tau$	10 ⁻⁵	5 × 10 ⁻⁶	10 ⁻⁶	10 ⁻⁹
H → eµ	-	6 × 10 ⁻⁵	10 ⁻⁵	10 ⁻⁵
$H \to \ell \tau$	-	2 × 10 ⁻³	few × 10 ⁻⁴	10 ⁻⁴
$t \rightarrow e\mu \nu(c)$	_	0.1 (1) × 10 ⁻⁶	× 1/5	no study

21

References

- [1] ATLAS collaboration, Search for the charged-lepton-flavor-violating decay $Z \rightarrow e\mu$ in pp collisions at $\forall s = 13$ TeV with the ATLAS detector, 2204.10783.
- [2] OPAL Collaboration, A search for lepton flavour violating Z decays, Z. Phys. C Particles and Fields 67 (1995) 555.
- [3] M. Dam, Tau-lepton Physics at the FCC-ee circular e^+e^- Collider, SciPost Phys. Proc. 1 (2019) 041 [1811.09408].
- [4] ATLAS collaboration, Search for charged-lepton-flavour violation in Z-boson decays with the ATLAS detector, Nature Phys. 17 (2021) 819 [2010.02566].
- [5] ATLAS collaboration, Search for lepton-flavor-violation in Z-boson decays with τ -leptons with the ATLAS detector, Phys. Rev. Lett. 127 (2022) 271801 [2105.12491].
- [6] DELPHI Collaboration, Search for lepton flavour number violating Z decays, Z. Phys. C Particles and Fields 73 (1997) 243.
- [7] CMS collaboration, Search for heavy resonances and quantum black holes in $e\mu$, $e\tau$, and $\mu\tau$ final states in proton-proton collisions at vs = 13 TeV, 2205.06709.
- [8] CMS collaboration, Search for lepton-flavor violating decays of the Higgs boson in the $\mu\tau$ and $e\tau$ final states in proton-proton collisions at v = 13 TeV, Phys. Rev. D 104 (2021) 032013 [2105.03007].
- [9] Q. Qin, Q. Li, C.-D. Lu, F.-S. Yu and S.-H. Zhou, Charged lepton flavor violating Higgs decays at future e^+e^- colliders, Eur. Phys. J. C 78 (2018) 835 [1711.07243].
- [10] ATLAS collaboration, Searches for lepton-flavour-violating decays of the Higgs boson in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector, Phys. Lett. B 800 (2020) 135069 [1907.06131]
- [11] ATLAS collaboration, Search for the Higgs boson decays $H \rightarrow ee$ and $H \rightarrow e\mu$ in pp collisions at Vs = 13 TeV with the ATLAS detector, Phys. Lett. B 801 (2020) 135148 [1909.10235].
- [12] LHCb collaboration, Search for lepton-flavour-violating decays of Higgs-like bosons, Eur. Phys. J. C 78 (2018) 1008 [1808.07135].

[13] CMS collaboration, Search for lepton flavour violating decays of a neutral heavy Higgs boson to $\mu\tau$ and $e\tau$ in proton-proton collisions at Vs = 13 TeV, JHEP 03 (2020) 103 [1911.10267].

[14] CMS collaboration, Search for charged-lepton flavor violation in top quark production and decay in pp collisions at \sqrt{s} = 13 TeV, 2201.07163

Extras

